
MORE DALLYING WITH CPS DESIGN EFFECTS 

Thomas N. Herzog, Social Security Administration* 

This paper describes an analysis of various sets 
of design effects constructed from the Census 
Bureau's March 1973 Current Population Survey 
(CPS). The paper is divided into five parts. 
In the first part we present the basic defini- 
tions, a discussion of our earlier results, and 
some limitations on the calculations to be 

performed. The second part is an investigation 
of some conjectures (of Kish and Frankel [1]), 

as they pertain to the CPS. In order to produce 
summary descriptors of collections of design 

effects, we consider, in part three, various 

schemes of averaging design effects. Since 
these schemes all appear to be unsatisfactory, 
in part four we propose an alternative type of 
summary descriptor based on the concept of 
empirical Stein estimation (see, for example, 
[2]). Finally, part five consists of a few brief 

concluding remarks. 

1. INTRODUCTION AND BACKGROUND 

1.1 Design effects. -- Standard statistical 
methods have been developed under the 
assumption of simple random sampling (SRS). 
Although the independence of sample elements is 
often assumed, it is seldom realized in large 
complex surveys. As a result, practitioners 
[3, 4, 5] suggest alternative methods, such as 
jackknifing or the use of balanced repeated 
replication, for calculating sampling errors in 

complex surveys. Design effects [6] are essen- 
tially just measures for comparing such 
estimates of the 'actual variance" to those 
computed under the SRS hypothesis. 

In particular, for a given statistic X, we 

define the design effect of X,i (X), by 

2(") 

where VAR(X) is the (expected) v iance of X for 

the actual complex survey, and (X) is the ex- 
pected variance of X which would have been ob- 
tained by selecting, with replacement, a simple 
random sample of exactly the same size from the 
entire population surveyed. For example, if P is 

the actual proportion of items in a population 
with a given characteristic and n is the sample 

size, then the SRS variance of the usual 
estimator, , of P is 

(1.2) 62(P) = P(1 -P) /n. 

The design effect,a,is a measure of the impact on 
the actual variance of the complexity of the 

sample design relative to that of simple random 

sampling; in other words, 6 summarizes the 

composite effect on the variance of such things 
as the number and nature of the selection at each 
stage of the sampling process, the extent of pre - 
and post- stratification, and the ultimate cluster 
size. We will use to refer to population 
values and to sample values. 
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1.2 Summary of previous results. --In a paper 
delivered at the 1976 Annual Meeting of the 
American Statistical Association [7], Fritz 

Scheuren and I presented an empirical study that 
considered: 

(i) various methods of calculating indi- 
vidual design effects for proportions, 
and 

(ii) various methods of averaging these 
individual design effects. 

The principal conclusions of that work were: 

(i) Each of the ( asymptotically- equivalent) 
design effect estimators considered 
produced essentially the same value. 
(This suggests that, for our data, each 
estimator considered was equally good.) 

(ii) Different methods of averaging these 
design effects produced substantially 
diverse summary statistics. 

The results on averaging methods in [7] warrant- 
ed further examination and led directly to the 
present effort. 

1.3 Statistics considered. --In last year's paper 
we considered design effects for CPS STATS units 
by race Of the unit head.1/ Within each racial 
group, design effects were calculated separately 
for five different classifiers: type of unit, 
total unit size, total earnings of unit, total 

social security benefits of unit, and total 
income of unit. The asymptotically unbiased es- 
timators whose design effects we examined were 

P(W), the proportion of whites in a 

given category, and 

(ii) P(B), the proportion of nonwhites in a 

given category. (Hereafter, we will 
refer to nonwhites as "blacks. ") 

In the present paper, we re- examine these design 

effects, as well as those of 

A 
(iii) D = P(W) - P(B), the difference in the 

proportion of whites and "blacks" in a 

given category, 

(iv) Yule's Q, and 

(v) the cross -product ratio, denoted by C. 

The last two statistics measure the association 
between the variables race (white or black) and 

inclusion (or exclusion) in a given category. In 

particular [9, p. 539], if we have the table of 
observed frequency counts 



White Black 

In category a b 

Not in category d 

then Yule's Q and the cross -product ratio C may 

be estimated as 

(1.3) 
ad-bc 

and 

(1.4) C = ad 

This definition of the cross -product ratio is the 
reciprocal of the usual one. We use the symbol 
5(w) to denote the set of design effects 
for the proportion of whites. Similarly, we use 

S(e), ¿(Q), and a(C) to denote, respect- 
ively, the set of design effects for the 
proportion of blacks, the difference in propor- 
tions, Yule's Q, and the cross -product ratio. 

1.4 Replicate estimators of design effects.- - 
There are, of course, many ways to construct 
estimators of design effects. In parts 2 and 3, 
we confine our attention to jackknife estimators 
which pertain when the sample may be separated 
into a number, say r, of independent, identically 
designed subsamples or replicates. The 
"replicates" employed in our study are the eight 
rotation panels of the March 1973 CPS.2/ For a 
particular set of design effects, say -;(W), we 
will basically employ estimators of the form 

(1.5) 
ic;(1,1) 

= VAR(W) 

where 
A 
VAR(W) is theAjackknife estimator of the actual 
variance of P(W) and 62(W) is an asymptotically 
unbiased estimator of the SRS variance of 1100. 

Formulas for computing the SRS variance estimates 
considered here appear in [9] under the assump- 
tion that the sampling of blacks and whites is 
carried out independently. In particular, our 
estimate of c72(W) is 

(1.6) 2(W) = {1- 

where n(W) denotes the total number of whites 
surveyed. 

Estimates of all of the actual variances and some 

of the design effects are obtaired by using the 

jackknifing technique. As in last year's paper, 

jackknifing is also used to calculate the 
standard errors of all the design effects consi- 

dered. 

1.5 Some limitations. -- Because the same sample 

of PSU's is common to all rotation panels, it is 

not possible to use the panels to estimate the 

between -PSU component of the CPS variance. Con- 
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sequently, the "design effects" considered here 
relate only to the within -PSU component of the 
estimators. It might be mentioned, parentheti- 
cally, that for each statistic discussed in this 
paper, the within -PSU component probably accounts 
for at least 90 percent of the total variation. 

The Census Bureau constructs all eight rotation 
panels in the same way. As already stated, we 
are using these 8 panels as the r =8 replicates. 
Consequently, there is considerable variation 
(from 1 to 8) between panels (i.e., "replicates ") 
in the number of times each of the interviewees 
is surveyed prior to and including the March 
1973 interview. 

Differences in the method of conducting the 

interviews also exist from panel -to- panel. Ini- 

tially, the questions are asked in person; but, 

in the later panels, most of the surveying is 

done by telephone. The net effect of these and 

other factors [10' is to alter the response 

patterns from panel -to -panel so that the panels 

cannot be assumed to be a priori identically 
distributed. The influence of these panel dif- 

ferences on the statistics under consideration 
here is not known.3/ When we began this work, we 

implicitly assumed that such panel effects, if 

any, would be small enough to ignore. This was 

in part,a reflection of our, perhaps misplaced, 

confidence in the nature of the raking ratio 

estimation procedures employed.4/ Project plans 

call for a repetition of the present calculation§ 

using a random group estimator (described in [12 

that would not be subject to "panel biases." 

2. AN EMPIRICAL COMPARATIVE INVESTIGATION OF 

SOME DESIGN EFFECT ESTIMATORS 

2.1 Kish -Frankel conjectures.- -This part of the 
paper is inspired by some conjectures of Kish and 

Frankel [1; p. 13]. Having defined as the mean 

of the vector of statistics Y and A as a complex 
function of Y, we may list the Kish- Frankel con- 

jectures as 

(i) 6(A)>1. In general, the population 
values of the design effects of complex 
statistics tend to be greater than 1. 

(ii) 6(A) <6(V). The design effect of the 
mean Y of a statistic Y tends to be 

greater than those of complex functions 
of Y. 

(iii) S(A) is related to 5(7). For vari- 

ates with higha(), values of 
tend also to be high. 

(iv) ¿(A) tends to resemble the design ef- 
fect for differences of means. 

(v) ¿(A) tends to have observable regular- 
ities for different statistics. 

A simple model of the above would be 



(2.1) 6(A 
9 

) =1 + fg 1] with 5(70 >1 

and 0<f <1 and f 
9 9 

specific to the variables and statistic denoted 
by g. 

The calculations in this part of the paper are 
performed for both the original five "basic" sets 
of design effects and for "high- proportion" sets 
which are created by deleting from the basic sets 
those categories in which either the proportion 
of whites is less than 2% or the proportion of 
blacks is less than 5 %. 

2.2 Conjecture (i).- -The first conjecture we 
examine is that the values of the design effects 

tend to be larger than 1. For the basic sets, 
each composed of 63 individual design effects, 
we find that 74.60% of the elements of `(W) are 
greater than 1. However, none of the other sets 
of design effects, including S(B), shares this 
property; only about 50% of these values tend to 

be larger than 1. 

For the high -proportion sets, each composed of 32 
individual design effects, 75% of the elements of 
4(W) are larger than 1. Moreover, for the other 
four high -proportion sets, the percentage of 
values greater than 1 increases, although remain- 
ing somewhat below that of 6(W). 

2.3 Conjecture (ii). - -We next compare the values 
of the individual design effects of each set to 
the corresponding values of each of the other 
sets of design effects. For the basic sets, we 
find that the elements of 6(W) tend to be larger 
(in about two- thirds of the cases) than the 
corresponding elements of the other sets of 
design effects. For example, 63.49% of the ele- 

is of 8'(W) exceed the corresponding values of 
3(8). For the other four basic sets, no one set 
particularly dominates any other,. For the high - 
proportion cases, the values of 6(4,again,tend 
to be the largest. The values of ¿(B) tend to be 
less than those, of the three complex statistics; 
the values of8(D) are both generally 
less than those of (3(C). 

In light of conjecture (ii), it is not surprising 

that the values of(W) dominate the values of 
the other sets; however, it is, at least at first 

glance, surprising that the values of 3(B) tend 

to be smaller than the values of the sets corre- 

sponding to the three complex statistics. 

2.4 Conjectures (iii), (iv),and (v). -- We next 

examine the correlation coefficient of each pair 

of sets of design effects. We find,for tin basic 

sets, á(W) is positively correlated wit (D) 

and negatively correlated with 3(B), 3(Q) and 
(C), the value of each of these four correla- 

tion coefficients being relatively close to zero; 

i.e., .0238, 0.0871, -.0502, and -.0495, respec- 

tively. For the high -proportion sets, 5(W) is, 

again,negatively correlated with each of the 

other four sets, but here the magnitude of each 
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of these correlation coefficients is relatively 
large. 

Excluding X(W), the remaining four sets are very 
strongly positively correlated. This is not sur- 
prising. Since about eight times as many whites 
are surveyed as blacks, the blacks account for 
roughly 85% of the variance of the difference in 

proportions. Furthermore, since 

(2.2) 0 < < 1 

we may write Q as 

(2.3) Q - 
P(B) 

1 2P4P(B)P(B) 

+I2P(W)P(B) 

2 + P(B) 

Also, since -1 Q 1, 

we may write C as 

(2.4) C = (1- 2Q +2Q2- 2Q3 +...). 

So C may be approximated by 1 -2Q, especially when 
the magnitude of Q is small. Thus, C is approx- 
imately a linear function of Q, and Q is approx- 
imately a linear function of the difference in 

proportions. It is, therefore, reasonable that 
the design effects for D, Q and C tend to be 

nearly equal and are so high correlated. 

Thus, considering the difference in proportions, 
Yule's Q and the cross -product ratio as complex 

functions of the proportion of blacks, we have an 

even stronger result than conjecture (iii); name- 

ly, that the design effects of (certain) complex 
statistics are highly -correlated with the design 

effects of the proportion of blacks. 

3. ORIGINAL DESIGN EFFECT AVERAGING SCHEMES 

In this part of the paper we reconsider the 
averaging schemes employed in our earlier paper. 
These schemes are applied to a number of sets of 
design effects not considered previously. Our 
goal here is to discover a good summary descrip- 
tor of sets of design effects. 

In our earlier paper, we considered four types of 

"averages " --the median and three means (arithme- 
tic, harmonic, and geometric). We also employed 
three distinct weighting schemes -- uniform weight- 
ing, weighting by the reciprocal of the estimated 
simple random sampling (SRS) variances, and 
weighting by the reciprocal of the estimated SRS 
relvariances. Applying these 4 x 3 12 averag- 
ing schemes to our five basic sets of design 
effects, we obtain the data of table 1. 

The results of two additional averaging schemes 

are also shown in table 1. The first scheme, 

suggested by Kish, is the square of the average 



of the square roots of the individual design 
effect estimates. Kish [6, p. 578] prefers this 
scheme. The second, referred to as the overall 
ratio average, is the average of all of the 
indivi estimated actual variances divided by 
the corresponding average of the estimated SRS 
variances. 

Last summer we were rather surprised that our 14 
averaging techniques produced such diverse 
numerical results as those displayed in table 1. 

Consequently, we have since examined these 
calculations in much greater detail. 

The most striking phenomenon concerned the two 
sets of non -uniform weighting schemes. In 

several instances, a relatively small number of 
the individual classes under consideration 
accounted for the predominant share of the 
weight. Consequently, in these cases, the values 
of the vast majority of the design effects of a 

particular set had almost no influence on the 
value of the summary statistic produced. 

It is instructive at this point to consider a 

specific case :the relvariance weighting scheme 
applied to the estimators of the design effects 
of the proportion of blacks. In this particular 
instance, three of the 63 classes account for 
over 70% of the weight. These three classes are: 

STATS units receiving no social 
security benefits (25.24 %); 

(ii) STATS units having total earnings of 
less than $10,000 (23.24 %); and 

(iii) STATS units having total income of less 
than $10,000 (22.11 %). 

In our earlier paper we also attempted to parti- 
tion the sets of design effects into subsets 
which would be more homogeneous. In particular, 
the estimated design effects for the proportion 
of whites and blacks were partitioned into three 
or four groupings according to the estimated 
value of the corresponding proportion. This 
procedure narrowed the range of the averages 
substantially; however, the numerical differences 

among the various averaging schemes were still 
"uncomfortably" large. 

4. STEIF! ESTIMATORS OF DESIGN EFFECTS 

In light of the diverse results of the averaging 

schemes just presented, we decided to consider 
another method of constructing a summary descrip- 

tor of a set of design effects The pproach 

taken is discussed in Geisser r13, 141 and is 

based upon an empirical Stein -type estimator. 

Geisser's approach is of a heuristic, ad hoc 

nature. Its justification lies in whether or not 

it works in a given situation. We believe that 

such a scheme can be profitably applied to our 
data. 

The Stein estimator, as originally formulated 
[2], requires a number of stringent assumptions, 
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some of which are clearly not valid in the 
present situation. On the other hand, Efron and 
Morris [15], among others, argue that the viola- 
tion of these assumptions does not necessarily 
diminish the estimator's usefulness. 

In the remainder of the paper we will discuss 
these issues as they pertain to our CPS data. 
The reader should keep in mind that we are only 
attempting to do some "dallying" with a few sets 
of design effects and are not attempting to 
resolve any of the outstanding theoretical issues 
concerning the general applicability of empirical 
Stein estimation. 

4.1 Criginal Stein estimator. - -We present here 
a brief description of Stein estimation. We, 
first, let j= 1,...,J and k= 1,...,K where K 3. 

For a given collection of parameters[e1., we 

assume that the random variables }are inde- 

pendent and normally distributed with 
and common variance 2 . In this setting, 
define the Stein estimator of to be 

(4.1) = X.. + 

K 

where X.j = and 
k=1 

J 

(4.2) 

The unknown parameter is such that 

(4.3) 1. 

James and Stein [2] have shown that for an 
appropriate choice ofµ, the use of the estimator 

Xj produces, on the average, a smaller mean 

square error than the maximum likelihood esti- 
mator. 

Following Geisser [13] , we let min 1,1) be an 

estimator of where 

(4.4) 

with 

(4.5) 

(4.6) 

(JK-1) 

(J -1)ml + (K -1)Jm2 

-1 

0-1) (K-1)J m? 1 
(JK-1) (JK-1) 

1 K J 2 

m1 J(K-1) (Xkj-X j) and 

k=1 j=1 

m2 J-1 (X. -X..)2 . 

j=1 



4.2 Steir estimation of design effects. --It now 
remains to relate the above formulation to the 
problem at hand. To limit the amount of compu- 
tation involved, we restrict our attention to 

(w)} , the set of computed design 

effects for the proportion of whites. In 

addition, we only consider the harmonic and Kish 
(unweighted) averaging schemes, as these pro- 
duced quite diverse results when applied to the 
individual(5j(W). (See table 1.) 

Our first approach is to replace 

(i) the by (W) },the actual 
(expected) values of the white design 
effects, 

(ii) the an d and 

(qrespectively, and 

(iii) X.. by .(w), an appropriate (i.e., 
harmonic or Kish) average of the set of 
individual design effects. 

Noting that m1 equals Y times the average of the 

usual estimators of the variances of the 

we can write the "ml" and "172" values corres- 

ponding to the as 

K 
(4.7) 

and 

(4.8) 

Hence,we have 

(4.9) m2 

J-1 

(1- 1 /J) -1 

j=1 

j(w)- 
j=1 

Mean squared deviation of 
the (W) from the overall 
avera §e 

Mean of the estim ted 
variances of the 

L 

This ratio can be evaluated by using the 
overall average .(W), together with the .(W) , 

and the corresponding jackknife estimated 
variances. 

It is now possible to estimate by substitut- 

ing for in equation (4.4) and choosing 
m1 
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suitable values for J and K. The choice of K =8 

and Jx63 is not optimal because it ignores the 

facts that the j(W, while based on 8 indepen- 

dent replicates, are not sample means, and that 

the design effect for each of our 63 categories 

is not independent of those of the other 

categories. 

Several ad hoc "solutions" to this selection 

problem were considered.5/ The one which seems 

most reasonable to us is to note [13] that 

(4.10) = min (p1,1) min 

and to simply choose min (, 1) as our 
2 

estimate of Computing a value for p in this 
manner, we find that it equals 1 for both the 
Kish and harmonic averaging schemes. This result 
was rather disappointing in that it leaves us 
exactly where we were at the end of section 3, 
with different averaging schemes producing 
diverse numerical results and no way to choose 
among them. 

We suspect that the value of p= 1 results from 
the heteroscedastic nature of the variances of 

the .(W). In order to "eliminate" this 

source of concern, we redefine and as 

(w)) 
= (4.11) 

j=1 

and 

(W) 

J 2 

K (c S. 
(4.12) m2 

= J -1 2 j =1 

m 

Estimating this time as min , we 

produce values of 0.5040 and 0.8885 for the 
harmonic and Kish schemes, respectively. Using 

these values of , we may re- estimate the white 

design effects by 

(4.13) (w) (w). 

Our next task is to compare the two sets of 

design effects calculated from equation (4.13). 

Our approach involves calculating, for each 

averaging scheme, the nominal length of the 

symmetric 95% confidence interval of the propor- 

tion of whites in each of the 63 categories. 

This is done under the assumption 6/ that 



E (w) = 

where is the estimator corresponding to 

(w). 

It can be shown that under regularity conditions 
the length of the j -th interval is proportional 
to 

(4.14) 

where t(.95, CF(j)) is the length of a sym- 
metric 95 confidence interval for a random 
variable having a Student's t distribution with 

DF(j) degrees of freedom. DF(j) is determined 
from 

(4.15) CF(j) = 2 /relvariance (5. (W)). 

Using this procedure, we find that, under Stein 
estimation, the length of the average confidence 
interval corresponding to the harmonic mean is 

100.8% of that of the Kish mean. This compares 
to a value of 90.52% for the corresponding (un- 
adjusted) averaging schemes of section 3. (This 
last quantity is simply the square root of the 
ratio of the harmonic average of the white 
design effects to that of the Kish average.) 

Since the Stein estimation procedure has 
produced confidence intervals whose average 
lengths are more nearly equal under the har- 
monic and Kish schemes, the Stein technique 
appears to compare favorably, at least for our 
data, to the unadjusted overall averaging 
schemes of section 3. It should be pointed 
out, however, that we have gone only a very 
small part of the way towards applying Stein 

estimation to design effects. The chief 
difficulty, not addressed in this paper, is that 
the confidence intervals are, in general, biased; 
hence, in some situations, they could be very 
badly mis- estimated. 

5. CONCLUDING REMARKS 

First and foremost, we must, again, emphasize 
that we have performed an empirical examination 
of the data of a single sample survey. In 

addition, we have only considered a very 
limited number of statistics. In general, the 
analysis described in part two confirms t e 

conjectures of Kish and Frankel Cl; p. 13 . 

As in our earlier paper, the averaging schemes 
discussed in part 3,unfortunately,produced 
widely diverse results. This may be because 
the sets of design effects considered were not 

sufficiently homogeneous for some or all of 
the averaging methods. On the other hand, the 
empirical Stein estimation scheme described in 
part four produced somewhat better results; 
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i.e., the lengthsof the confidence intervals 

were on the average more nearly equal. These 

improved results were, however, obtained by 

the application of an ad hoc technique to a 

single set of data. Thus, our evidence in 

support of the Stein estimation scheme is not 
exactly overwhelming. 

There is no doubt that much theoretical work 
is needed to "resole " the issues raised here. 
As Kish and Frankel L1, p. 13] suggest, such 
theory will need to buttressed by empirical 
results. We, therefore, encourage others to 
do some "dallying" with their own favorite sets 
of design effects, as we will continue to do 
ourselves. 
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1/ A "STATS" unit is a group of individuals 
in a CPS household who would generally be 
considered to be interdependent under 
social insurance programs. The STATS unit 
concept is defined in [8] . 

2/ See subsection 1.5 below for the limitation 
imposed by this use of rotation panels as 
replicates. 

3/ It should be pointed out, however, that to 
the extent that there are any panel dif- 
ferences, these would lead to an increase 
in the expected value of the estimated 
design effects. 

4/ The estimator being used is described in [11] 

where it is referred to as the "intermediate 
undercount raking weight." 

5/ One such "solution" involves letting 

Km// -1)m2 + with K =7. 

6/ We have some results for thg more realistic 
and interesting case when j(W), but 

these were not presented at session and, 
in any case,are still incomplete. 
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Table 1. -- Selected methods of averaging CPS within -PSU design effects: Usual and jackknifed estimators of the design effects, standard 
error 

and coefficient of variation of averages 

Item 

Jackknife Estimator 
Coefficient of Variation 

Proportion 

of whites 

Proportion 
of blacks 

Difference 
in 

proportions 

Yule's Cross- Product 
Ratio 

Proportion 

of whites 

Proportion 

of blacks 

Difference 
in 

proportions 

Yule's Cross- Product 
Ratio 

Uniform unit weighting: 

Arithmetic 
Geometric 
Harmonic 
Median 

Weighting by reciprocal of 

estimated variances under 

simple random sample: 

Arithmetic 
Geometric 
Harmonic 
Median 

Weighting by reciprocal of 

estimated relvariances under 

simple random sample: 

Arithmetic 
Geometric 
Harmonic 
Median 

Kish roproarh 
Overall ratio average 

1.6200 

1.4243 
1.2440 
1.4249 

1.3319 
1.2443 
1.1276 
1.2664 

2.2627 

2.0254 
1.7791 
2.2711 

1.5201 
1.9517 

1.2574 
.9964 
.7233 

1.0292 

1.2263 
.9156 

.5615 

.9474 

.9146 

.8402 

.7952 

.7550 

1,.2384 

1.0106 
.3040 

1.0745 

1.1231 
.6866 

.6765 

.2326 

1.3046 

1.1722 

.9984 

1.2466 

1.1260 1.1230 

1.3103 1.3160 

1.2509 

1.0183 
.8218 

.9646 

1.2673 

1.0657 
.3997 

1.0219 

1.2259 

1.0827 

.9506 

1.0219 

1.2160 

.9945 

.7978 

.9920 

1.1046 
.9519 
.8071 

.9920 

1.2728 
1.0668 
.8962 
.9920 

1.1303 1.1033 

1.1570 .8377 

.1545 

.1513 

.1737 

.1008 

.0631 

.1153 

.1391 

.1967 

.3721 

.3197 

.2369 

5310 

.0714 

.0653 

.1974 

.1736 

.1208 

.0697 

.3291 
.2214 

.1276 

.1789 

.22116 

.3477 

.0625 

.1017 

.1124 

.1244 

.1849 

.1726 

.1515 

.1744 

.2565 

.2811 

.2119 

.2620 

.2835 

.4434 

.0930 

.0908 

.1132 

.1300 

.0950 

.1097 

.1254 

.1614 

.1469 

.2102 

.2203 

.3688 

.1122 .0889 

.1133 .1128 

.0977 

.0932 

.1163 

.1196 

.0352 

.1322 

.1433 

.3939 

.1079 

.1077 

.1791 

.1571 

.0922 

.1214 

Note: The values shown for proportions in this table differ somewhat from the corresponding values shown in last year's paper because, 

even though the same data set was used, the way we defined 
the categories was altered slightly. 
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